Continued Study of Parallel Events

Brendon Bullard

July 13, 2016

Adding Hadronic Cuts

- ► Hadrons that don't travel far shouldn't affect reconstruction
- ► Cut hadrons that stop before traveling 1.5 cm
- ► Energy threshold of 17.5, 30, and 39 MeV for pion, kaon, and proton, respectively 2 / 11

Adding Hadronic Cuts

- ▶ 10⁶ simulated events, 602,092 CC events (562,003 after energy cut)
- ▶ Required lepton energy < 6 GeV; exclude neutrons and neutral pions
- ► Throw out particles having energy less than the threshold
- ► Record minimum angle of a hadron to the wire plane () ()

Adding Hadronic Cuts

If we require both the lepton and at least one hadron passing the energy threshold to be within a small angle to the wire plane:

	CC QE	CC Res	CC DIS
$-$ Hadron $< 5^{\circ}$	9.0%	21.5%	43.5%
Both $< 5^{\circ}$	2.7%	6.0%	7.7%
$-$ Hadron $< 7.5^{\circ}$	12.4%	30.5%	55.0%
Both $< 7.5^{\circ}$	5.6%	12.2%	14.8%
$\overline{Hadron < 10^\circ}$	16.0%	38.6%	63.5%
Both $< 10^{\circ}$	9.0%	19.6%	23.1%

- ▶ Represents the percentage of events where the lepton and at least one energetic hadron are overlapping and degenerate → more difficult to reconstruct
- \blacktriangleright Adding energy cut reduces problematic cases by factor of ${\sim}2$

π^0 Decay Backgrounds

- ▶ Neutral pions can be produced in ν_e interactions
- ▶ The main decay mode is $\pi^0 \to 2\gamma$, which constitutes a large background for the signal $\nu_e n \to ep$
- ▶ It is difficult to distinguish this background from a true signal if one of the photons converts to an electron within 3 cm
- \blacktriangleright MC used does not decay final state pions \rightarrow use TGenPhaseSpace to simulate decay
- ► Select smallest photon angle relative to the wire plane
- ► Simulate radiation length of photon using TRandom3::Exp()
- ► For now, assume converted electron is parallel to photon

π^0 Decay Backgrounds - CC

- lacktriangle Percentages are of events in each channel to all CC with $E_e < 6$ GeV
- $lacktriangleq 10^6$ simulated events, 32,789 events having a final state π^0
- ► Required lepton energy < 6 GeV

π^0 Decay Backgrounds - CC

If we require both the lepton and at least one photon to be within a small angle to the wire plane:

	CC QE	CC Res	CC DIS
Photon < 5°	18.2%	19.8%	41.9%
Both $< 5^{\circ}$	5.7%	5.5%	7.4%
Photon < 7.5°	27.0%	28.7%	53.1%
Both $< 7.5^{\circ}$	12.2%	11.5%	14.3%
$ ho$ Photon $< 10^{\circ}$	33.5%	36.7%	61.4%
Both $< 10^{\circ}$	18.9%	18.6%	22.3%

- ▶ Represents the percentage of events where the lepton and at least one short-lived photon are overlapping and degenerate within certain angle → more difficult to reconstruct
- ▶ DIS is most problematic due to greater number of hadrons produced

π^0 Decay Backgrounds - NC

- lacktriangle Percentages are of events in each channel to all NC with $E_e < 6$ GeV
- \blacktriangleright 10⁶ simulated events, 202,698 NC, 12,801 events having a final state π^0
- ► Required lepton energy < 6 GeV
- ▶ Record minimum angle of a photon to wire plane, consider all photons = 900 produced by all π^0 per event 8 / 11

π^0 Decay Backgrounds - NC

If we require at least one photon to be within a small angle to the wire plane:

	NC QE	NC Res	NC DIS
Photon < 5°	17.4%	20.3%	42.1%
$Photon < 7.5^{\circ}$	27.5%	29.0%	53.6%
Photon $< 10^{\circ}$	33.3%	36.4%	61.5%

- ► Represents the percentage of events where at least one short-lived photon is degenerate within specified angle
- ▶ Again, DIS is most problematic due to more hadrons produced

What's Next

- \blacktriangleright π^0 can decay to photons inside an Ar nucleus. Should also consider photons when computing the minimum angle of hadrons
- Find out how many π^0 decay to photons inside the Ar nucleus
- ▶ Combine results from hadron+ γ with $\pi^0 \to 2\gamma$ to understand all CC events that affect reconstruction

MC Files

 $\label{lower_state} fastmcNtp_20140711_lbne_g4lbnev3r2p4_nuflux_numuflux_nue_LAr_1_g280_Ar40_5000_Default.root$

lacktriangle Fully oscillated u_{μ} beam; used for hadron and CC π^0 decay studies

fastmcNtp_20140711_lbne_g4lbnev3r2p4_nuflux_numuflux_numu_ LAr_1_g280_Ar40_5000_Default.root

• Unoscillated ν_{μ} beam; used for NC π^0 decay studies